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Abstract
We consider a class of inhomogeneous nonlinear diffusion equations (INDE)
that arise in solute transport theory. Hidden nonlocal symmetries that seem not
to be recorded in the literature are systematically determined by considering
an integrated equation, obtained using the general integral variable, rather than
a system of first-order partial differential equations (PDEs) associated with
the concentration and flux of a conservation law. Reductions for the INDE
to ordinary differential equations (ODEs) are performed and some invariant
solutions are constructed.

PACS numbers: 02.60.Lj, 05.60.Cd, 47.55.Mh
Mathematics Subject Classification: 35K, 35B

1. Introduction

In modelling transport of adsorbing solutes in soils, the resulting diffusion–adsorption equation
happens to be nonlinear of Fokker–Planck type. Using methods by Munier et al [10], power-
law nonlinear adsorption–diffusion equations transform into a canonical form of the INDE:

f (x)
∂u

∂t
= ∂

∂x

(
g(x)un ∂u

∂x

)
. (1)

Furthermore, one may adopt a new spatial variable

x ′ =
∫ x

0
f (s) ds
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so that it may be assumed, without loss of generality, that f = 1. Equation (1) is of fundamental
importance in the diffusive transport processes that occur in mathematical physics. Naturally,
this has provided motivation to find possible reductions to ordinary differential equations,
along with special exact solutions. Potential symmetry analysis for this equation has been
carried out by Khater et al [7] and Sophocleous [19–21].

We observe [5] that equation (1) with special case n = −2, f (x) = 1 and g(x) = x2, is
an integrable equation. It is transformable into the well-known potential-symmetry-admitting
Fujita–Storm equation [6, 22]

θt = [θ−2θx]x, (2)

most simply [13] by the point transformation θ = u/x. The Fujita–Storm equation (2) may
be further simplified to the standard constant-coefficient linear diffusion equation by nonlocal
transformations [22, 8, 4, 21]. Therefore, this case must give rise to potential symmetries.
However, the classification reported in [7, 20] indicates no potential symmetries for this special
case. The source of this discrepancy should be investigated so that the same problem can be
avoided when other classes of partial differential equations are analysed.

It is common when constructing potential symmetries to first express the governing PDE
in conserved form as a system of first-order PDEs. Some PDEs may be expressed as an
auxiliary system in a number of inequivalent ways. For example [14] the linear wave equation

∂2u

∂t2
= x

∂2u

∂x2
(3)

may be expressed in two distinct ways as a system of first-order PDEs, namely

∂φ

∂x
= 1

x

∂u

∂t
,

∂φ

∂t
= ∂u

∂x
, (4)

and
∂φ

∂x
= ∂u

∂t
,

∂φ

∂t
= x

∂u

∂x
− u, (5)

where φ is the potential variable. The first system indicates a globally conserved quantity∫
1

x
ut dx,

with corresponding flux density −ux . The second system indicates a globally conserved
quantity ∫

ut dx

with corresponding flux density u−xux. In this example, system (4) admits point symmetries
that induce potential symmetries for the wave equation (3), whereas system (5) does not. This
example shows that the choice of the specific form of the auxiliary system is crucial when
making a symmetry classification. If we naively adopt standard integral variables such as φ

of equation (5), then some important potential symmetries will remain hidden.
In section 2, we discuss modelling the transport of adsorbing solutes in soils. In section 3,

we develop a systematic method that finds all potential symmetries, including those that are
missed by standard potential symmetry analysis. In this method, we first assume a general
weighted integral variable and then determine symmetries of an integrated form of the original
governing equation, rather than a system of first-order PDEs associated with it. Lastly, in
section 4 we present some reductions of the INDE by elements of the optimal system of
one-parameter groups of potential symmetries.
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2. Nonlinear adsorption–diffusion of solutes in porous media

Combining the equation of continuity for mass conservation

∂(θ(t, z)c)

∂t
+

∂J

∂z
= 0,

with the form of solute flux density (see, e.g., [1])

J = −θ(t, z)D(v)
∂cf

∂z
+ qcf

we obtain the adsorption–diffusion equation

∂(θ(t, z)c)

∂t
= ∂

∂z

[
D(v)θ(t, z)

∂cf

∂z
− qcf

]
, (6)

where c = ca + cf is the total concentration of one chemical species, cf is the concentration
within the liquid solution, ca is the concentration of the adsorbed component, q is the Darcian
water flux, θ(t, z) is the volumetric water content, t is time, z is the vertical depth measured
positively downwards and D(v) is the pore water velocity-dependent dispersion coefficient.
Experimental observations [1] reveal that D(v) is approximately in linear proportion to the
pore water velocity v = |q|

θ
. We assume D(v) = δv, where δ is the dispersion length.

D(v) includes both molecular and mechanical dispersion [1]. If the adsorption process is
bimolecular and the desorption process is monomolecular (see [16]) then the equilibrium
condition is

cf c

ca

= κ. (7)

Since c = ca + cf , the locally free concentration is given by

cf = c

1 + κ−1c
, (8)

where κ is the equilibrium constant [16]. For steady water flow and using the equation for
continuity, we obtain the nonlinear adsorption–diffusion equation

θ(z)

(1 − κ−1cf )2

∂cf

∂t
= ∂

∂z

(
δ|q|∂cf

∂z

)
− q

∂cf

∂z
. (9)

With application to evaporation from a water table at a constant Darcian water flux q = −R,

so that R is the evaporation rate, equation (9) then becomes

θ(z)

(1 − κ−1cf )2

∂cf

∂t
= δR

∂2cf

∂z2
+ R

∂cf

∂z
. (10)

In terms of scaled dimensionless variables we write equation (10) as

θ∗(z∗)
(1 − c∗)2

∂c∗
∂t∗

= ∂2c∗
∂z2∗

+
∂c∗
∂z∗

. (11)

Here c∗ = cf /cs, t∗ = t/ts, z∗ = z/λs, θ∗ = θ/θs , with cs being a suitable concentration cale,
cs = κ , δ = λs and ts = θsδ/R. θs is the water content at saturation and λs is a macroscopic
sorptive length scale [23].
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3. Classical potential symmetry analysis

Construction and applications of potential symmetries may be found in [2]. Let µ = 1 − c∗,
then under µ = e−z∗v(ẑ, t∗), ẑ = ez∗ [10], equation (11) transforms to

∂v

∂t∗
= H(ẑ)v2 ∂2v

∂ẑ2
, (12)

where H(ẑ) = 1
θ∗(z∗)

. Equation (12) is linearizable only when H(ẑ) is quadratic in ẑ [10]. The
transformation

v−1 = u, y =
∫

1

H(ẑ)
dẑ,

allows us to write equation (12) as a local conservation law

∂u

∂t∗
= ∂

∂y

(
u−2G(y)

∂u

∂y

)
, (13)

where G(y) = dy/dẑ. Equation (13) may naturally be split into an auxiliary system

∂φ

∂y
= u,

∂φ

∂t∗
= u−2G(y)

∂u

∂y
, (14)

where φ is the potential variable. Symmetry analysis of the auxiliary system (14) using
Dimsym [17] reconfirms the results obtained for the cases G = constant, and the power law
G(y) = y4 [2, 7, 18–20]. Note that potential symmetries are invisible for the system (14) with
the power law (15). The second equation in the system (14) may further be split into another
auxiliary system since it may be written in a conserved form (see, e.g., [20]). We refrain from
expressing equation (13) as a system of first-order PDEs or auxiliary system (14), but rather
show that in the undetected special case

G(y) = y2, (15)

equation (13) admits extra potential symmetries and that these may be constructed by
considering the integrated form of the governing equation in terms of a general integral-
dependent variable

φ =
∫

k(y) u(y, t∗) dy + J (t∗), (16)

where J (t∗) is a constant of integration. This ansatz provides a wider freedom in the definition
of the integral variable, through the kernel k. The determining equations for non-generic
potential symmetries now include differential equations for k(x). Substituting (16) into (13)
we obtain a third-order partial differential equation

φyt∗φ
2
y

(yk)2
= 2

yk

(
1 − φyy

φy

)
(kφyy − k′φy) + φyyy − k′′φy

k
. (17)

Classical point symmetries of equation (17) yield nonlocal or potential symmetries of
equation (13) (see, e.g., [2]) provided the transformed points (ȳ, t̄ , ū) of graph space depend
explicitly on φ. In the classical symmetry analysis of equation (17) with arbitrary k, Dimsym
[17] reports that the admitted principal Lie algebra is spanned, in the generic case, by the base
vectors

�1 = φ
∂

∂φ
+ 2t∗

∂

∂t∗
, �2 = ∂

∂t∗
and �1∞ = h(t∗)

∂

∂φ
. (18)
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It remains to find all possible functions k for which equation (17) admits extra point symmetries.
Dimsym [17] reports that extra symmetries may be obtained only if k is a solution of the first-
order linear ODE

yk′ + k = 0, (19)

or the third-order nonlinear ODE

(y3kk′+ y2k2)k′′′+ (y3(k′)2 − 2y3kk′′− 3y2kk′+ 4yk2)k′′+ (2y2(k′)2− 4ykk′+ 2k2)k′ = 0,

(20)

or the fourth-order nonlinear ODE

(y5k2(k′)2 + 2y4k3k′ + y3k4)k(iv) + (7y2k4 + 5y3k3k′ + y4k2(k′)2 + 3y5k(k′)3 − 6y4k3k′′

− 6y5k2k′k′′)k′′′ + (29y3k2(k′)2 − 25y2k3k′ − 7y4k(k′)3 + 10yk4

+ y5(k′)4 − 23y3k3k′′ + 8y4k2k′k′′ − 5y5k(k′)2k′′ + 6y5k2(k′′)2)k′′

+ (2k4 − 12yk3k′ + 20y2k2(k′)2 − 12y3k(k′)3 + 2y4(k′)4)k′ = 0. (21)

The general solution to equation (19) is k = a1/y. After setting the inconsequential non-zero
free constant a1 to unity, equation (13) integrates completely to

φt∗ = φyy

φ2
y

+ w(t∗), (22)

where w(t∗) is a constant of integration which, without loss of generality, will herein be
equated to zero. Dimsym [17] finds extra point symmetries admitted by equation (22) namely,

�3 = ∂

∂φ
, �4 = y

∂

∂y
, �5 = 2t∗

∂

∂φ
− φy

∂

∂y
,

(23)
�6 = 4φt∗

∂

∂φ
− y(φ2 + 2t∗)

∂

∂y
+ 4t2

∗
∂

∂t∗
, and �2∞ = S(φ, t∗)

∂

∂φ
,

where S is a general solution of a linear diffusion equation

Sφφ − St∗ = 0,

indicating the linearization [3] of equation (22). �5 and �6 induce nonlocal symmetries
admitted by equation (13). The special choice k = 1/y in (16) is associated with the fact that
equation (22) with w(t∗) = 0 can be expressed as an alternative conservation law, equivalent
to the auxiliary system

φy = u

y
, φt∗ = y

u2

∂u

∂y
− 1

u
. (24)

The corresponding globally conserved quantity is∫
u

y
dy

with flux
1

u
− y

u2
uy.

We refer to (24) as a ‘hidden auxiliary system’. This particular auxiliary system is in fact
equivalent to the standard auxiliary system of (2) by the transformation [13]

θ = u/y, x = y.

However, by the general approach developed here, no prior knowledge of the equivalence class
of the target PDE is necessary. It could be applied just as readily to non-integrable PDEs and
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the algorithm can easily be implemented using a symmetry-finding algorithm implemented on
a computer algebra package. Equation (20) is equivalent to

[log p′′(y) − 2 log p′(y) + log p]′ = 0, (25)

where p = yk(y). Hence the general solution to (20) is

k = (a1 + a2y)a3/y (26)

or

k = a1 ea2y/y, (27)

with ai arbitrary constants. Each of these special choices for k(y) leads to additional
symmetries for (17). In the case of (26), the additional symmetries are generated by

�1 = 2t
∂

∂t
− y

a3

∂

∂y
− a1

a2a3

∂

∂y
,

and

�2 = φ
∂

∂φ
+

y

a3

∂

∂y
+

a1

a2a3

∂

∂y
.

In the case of (27), the additional generators are

�1 = 2t
∂

∂t
− 1

a2

∂

∂y

and

�2 = φ
∂

∂φ
+

1

a2

∂

∂y
.

However, these are merely extensions of point symmetries for (13). Both equations (20) and
(21) admit the solutions k = 1/y and k = constant. Equation (21) is a differential consequence
of equation (20) and we suspect that no further nonlocal symmetry-bearing cases of k exist.

Now applying this method to a more general PDE (13), where G(y) is arbitrary and the
term u−2 is generalized to un, we obtain results which are already given in [2, 7, 19, 20]
and recover the results obtained in (18) and (23) for G(y) = y2. No further new cases were
obtained and we herein omit these calculations.

4. Potential symmetry reductions for the INDE

Using the method employed by [11], we find the one-dimensional Ovsiannikov [12] optimal
system,

{�1 + a�4,±�2 ± �3 + �6, �2 + �6, �3 + �6, �6, �4 ± �5, �4},
where a is an arbitrary constant. The canonical invariants and the reduced ODEs associated
with each of these elements are given in table 1. Following reductions by all the elements of
the optimal system except �4 +�5, the obtained solutions to equation (22) are given in implicit
form. In the following, we construct a simple explicit invariant solution to equation (13).

Example (i). Reduction by �4 + �5 leads to a functional form

ln y = 1

2

(
φ − φ2

2

)
+ F(t∗),

where F satisfies the ODE

F ′(t∗) = 1

4t2∗
− 1

2t∗
.



Systematic construction of hidden nonlocal symmetries 8285

Table 1. Nonlocal symmetry reductions for equation (22).

Symmetry Reduced ODEs

�1 + a�4 φ = √
t∗F(ρ), where ρ = y√

t∗ and F satisfies

F ′′ − 1
2 F(F ′)2 + 1

2 ρ(F ′)3 = 0

�2 + �3 + �6 ln y = − t∗(φ − t∗)2

4t2∗ +1
− φ

2 + t∗
4 + arctan(2t∗)

8 − ln(4t2∗ + 1)

4 + F(ρ),

where ρ = φ−t∗√
4t2∗ + 1

and F satisfies

F ′′ + (F ′)2 + ρ2 − 1
4 = 0

�2 + �6 ln y = − φ2 t∗
4t2∗ + 1

− ln(4t2∗ +1)

4 + F(ρ), where ρ = φ√
4t2∗ +1

,

and F satisfies F ′′ + (F ′)2 + ρ2 = 0

�3 + �6 ln y = − 24t2∗ φ2+12t∗φ+1
96t3∗

− ln
√

t∗ + F(ρ), where

ρ = 8t∗φ+1
8t2∗

and F satisfies F ′′ + (F ′)2 − ρ
8 = 0

�6 ln y = − φ2

4t∗ − ln t∗
2 + F

(
φ
t∗

)
, where F satisfies F ′′ + (F ′)2 = 0

Thus,

φ = a2 ±
√

4a1t∗ − 4t∗ ln y − 2t∗ ln t∗, (28)

is a solution to equation (22), with a1 and a2 arbitrary constants. Hence equation (13) admits
a solution

u = ±
√

2t∗
a1 − 2 ln y − ln t∗

. (29)

For t greater than zero, this solution may be extended continuously to y = 0 where it must
satisfy the simple Dirichlet boundary condition u = 0. However, there is a singularity at the
moving boundary

y = ea1/2t−1/2
∗ .

Similar solutions may be obtained when F = constant in the reduction by �6, included in
table 1. Solutions to related moving boundary problems on heterogeneous media were given
in [15]. In a separate paper [9], we discuss associated solutions to the solute transport model
outlined here in section 2.

5. Conclusion

Integral symmetries admitted by the INDE (13) have been obtained for the special case
G(y) = y2 by considering the integrated form expressed in terms of a general weighted
integral-dependent variable. These symmetries are more general than those found by the
standard algorithm for potential symmetries. Invariant solutions have been constructed using
potential symmetries that are not found by the standard algorithm.

The use of a general weight function k(y) in the definition (16) of the integral variable,
produced an additional nonlocal symmetry only in the very special circumstance that the
new weighted integral was a conserved quantity. For the particular class of PDE considered
here, the subclass of equations possessing nonlocal symmetries is identical to the subclass of
equations that can be expressed as conservation laws (Goard, private communication). We do
not know if this observation, made without reference to variational formulations and Noether
symmetries, is indicative of a more general principle.
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